作者君在作品相关中已经解释过这个问题,并在此列出相关参考文献中的一篇开源论文。
以下是文章内容:
long-tertegrationsaaryorbitsoursorsyste
abstrac
wepresenttheresultsofverylong-ternuricaliaryorbitalotionsover109-yrti-spanscsaquickspectionofournuricaldataryotion,atleastoursipledynaicalodel,seestobequitestableevenoverthisverylongti-spanacloserlookatthelowest-frequencyosciltionsgalow-passfiltershowsthepotentiallydiffivecharacteraryotion,especiallythatofrcurythentricityofrcuryourtegrationsisqualitativelysiirtotheresultsfrojacquesskar'ssecurperturbationtheory(egeax∼035over∼±4gyr)however,therearenoapparentsecentricityorctionanyorbitals,whichayberevealedbystilllonger-ternuricaltegrationswehavealsoperfordaupleoftrialtegrationscdgotionsosoverthedurationof±5x1010yrtheresultdicatesthatthethreeajorresonancestheneptune–ptosystehavebeenataedoverthe1011-yrti-span
1troduction
11defitionoftheproble
thequestionofthestabilityofoursorsystehasbeendebatedoverseveralhundredyears,scetheeraofnewtontheproblehasattractedanyfaoatheaticiansovertheyearsandhaspyedacentralrolethedevelopntofnon-leardynaicsandchaostheoryhowever,wedonotyethaveadefiteanswertothequestionofwhetheroursorsysteisstableornotthisispartlyaresultofthefactthatthedefitionoftheter‘stability’isvaguewhenitisedretiontaryotionthesorsysteactuallyitisnoteasytogiveaclear,rigoroandphysicallyangfuldefitionofthestabilityofoursorsyste
aonganydefitionsofstability,hereweadoptthehilldefition(gdan1993):actuallythisisnotadefitionofstability,butofstabilitywedgunstablewhenurssowherethesyste,startgfroacertaitialnfiguration(chabers,wetherill&boss1996;ito&tanikawa1999)asysteisdefedasexperiencgacloseenunterwhenobodiesapproachoneanotherwithanareaofthergerhillradiotherwisethesysteisdefedasbegstablehenceforwardwarysysteisdynaicallystableifnocloseenunterhappensdurgtheageofoursorsyste,about±5gyrcidentally,thisdefitionayberepceurrenceofanyorbitalcrossgbeeeneistakespcethisisbecaeweknowfroxperiencethatanorbitalcrossgisverylikelytoleadtoacloaryandarysystes(yoshaga,kokubo&ako1999)ofursethisstatentcannotbesiplyappliedtosysteswithstableorbitalresonancessuchastheneptune–ptosyste
12previostudiesandaisofthisresearch
additiontothevaguenessofthenceptofstability,soursorsysteshowacharactertypicalofdynaicalchaos(ssan&wisdo1988,1992)thecaeofthischaoticbehaviourisnowpartlyunderstoodasbegaresultofresonanceoverppg(urray&hon1999;lecar,frankl&hon2001)however,iouldrequiretegratgovearysystescsforaperiodvergseveral10gyrtothoroughlyunderstandthelong-tearyorbits,scechaoticdynaicalsystesarecharacterizedbytheirstrongdependenceonitialnditions
frothatpotofview,anyofthepreviolong-ternuricaltegrationscdedonls(ssan&wisdo1988;koshita&nakai1996)thisisbecaetheorbitalperisaresouchlongerthanthoseosthatitisucheasiertofollowthesysteforagiventegrationperiodatpresent,thelongestnuricaltegrationspublishedjournalsarethoseofduncan&lissauer(1998)althoughtheiratargeastheeffectofpost-a-sequencesorasslossontaryorbits,theyperfordanytegrationsvergupto∼1011yroftheorbitalotionsofstheitialorbitalelensarethesaasthoseofoursorsysteduncan&lissauer'spaper,buttheydecreasetheassofthesungraduallytheirnuricalexpertsthisisbecaetheynsidertheeffectofpost-a-sequencesorasnsequently,theyfoundthatthecrossgti-aryorbits,whichcanbeatypicaldicatorofthestabilityti-scale,isquitesensitivetotherateofassdecreaseofthesunwhentheassofthesunisclosetoitspresentvae,sreastableover1010yr,orperhapslongerduncan&lissaueralsoperfordfoursiirexpertsontheorbitals(ventoneptune),whichveraspanof∼109yrtheirexperisarenotprehensive,butitseesthattsalsoreastabledurgthetegrationperiod,atagalostregurosciltions
ontheotherhand,uratesei-analyticalsecurperturbationtheory(skar1988),skarfdsthatrgeandirregurvariationentricitiesandctionsofts,especiallyofrcuryandarsonati-scaleofseveral109yr(skar1996)theresultsofskar'ssecurperturbationtheoryshouldbenfirdandvestigatedbyfullynuricaltegrations
thispaperwepresentpreliaryresultsofsixlong-ternuricaltegrataryorbits,vergaspanofseveral109yr,andofoothertegrationsvergaspanof±5x1010yrthetotalepsedtiforalltegrationsisorethan5yr,gseveraldedicatedpcsandworkstationsoneofthefundantalncsionsofourlong-tertegrationsistharyotionseestobestabletersofthehillstabilityntionedabove,atleastoverati-spanof±4gyractually,ournuricaltegrationsthesystewasfarorestablethanwhatisdefedbythehillstabilitycriterion:notonlydidnocloseenunterhappendurgthetegrationperiod,aryorbitalelentshavebeennfedanarrowregionbothtiandfrequencydoa,aryotionsarestochasticscethepurposeofthispaperistoexhibitandoverviewtheresultsofourlong-ternuricaltegrations,weshowtypicalexaplefiguresasevidenceoftheverylong-terstabilityaryotionforreaderswhohaveorespecificanddeeperterestsournuricalresults,wehavepreparedawebpage(aess),whereweshowraworbitalelents,theirlow-passfilteredresults,variationofdeunayelentsandangurontudeficit,andresultsofoursipleti–frequencyanalysisonallofourtegrations
section2webrieflyexpourdynaicalodel,nuricalthodanditialnditionsedourtegrationssection3isdevotedtoadescriptionofthequickresultsofthenuricaltegrationsverylong-terstabilityaryotionisaarypositionsandorbitalelentsaroughestiationofnuricalerrorsisalsogivensection4goesontoadiscsionofthelongest-tearyorbitsgalow-passfilterandcdesadiscsionofangurontudeficitsection5,wepresentasetofnuricaltegrationsfosthatspans±5x1010yrsection6wealsodiscsthelong-teraryotionanditspossiblecae
2descriptionofthenuricaltegrations
(本部分涉及比较复杂的积分计算,作者君就不贴上来了,贴上来了起点也不一定能成功显示。)
23nuricalthod
weutilizeasend-orderwisdo–honsyplectiapasourategrationthod(wisdo&hon1991;koshita,yoshida&nakai1991)withaspecialstart-upproceduretoreducethetruncationerrorofanglevariables,‘warstart’(saha&treae1992,1994)
thestepsizeforthenuricaltegrationsis8dthroughoutalltegrats(n±1,2,3),whichisabout1/11oftheorbitalperiodo(rcury)asforthedeterationofstepsize,wepartlyfollowtheprevionuricaltegrasssan&wisdo(1988,72d)andsaha&treae(1994,225/32d)weroundedthedecialpartofthetheirstepsizesto8toakethestepsizeaultipleof2ouutionofround-offerrorputationprocessesretiontothis,wisdo&hon(1991)perfordnuricaltegrationsoaryorbitsgthesyplectiaithastepsizeof400d,1/1083oftheorbitalperiodofjupitertheirurateenough,whichpartlyjtifiesourthodofdetergthestepsizehowever,entricityofjupiter(∼005)isuchsallerthanthatofrcury(∼02),weneparethesetegrationssiplytersofstepsizes
thetegrationos(f±),wefixedthestepsizeat400d
weadoptgas'fandgfunctionsthesyplectiaptogetherwiththethird-orderhalleythod(danby1992)asasolverforkeplerequationsthenuberofaxiuiterationswesethalley'sthodis15,buttheyneverreachedtheaxiuanyofourtegrations
thetervalofthedataoutputis200000d(∼547yr)forthecalcuts(n±1,2,3),andabout8000000d(∼21903yr)forthetegrationos(f±)
althoughnooutputfiltergwasdonewhenthenuricaltegrationswereprocess,weappliedalow-passfiltertotheraworbitaldataafterwepletedallthecalcutionsseesection41fororedetail
24errorestiation
241retiveerrorstotalenergyandangurontu
aordgtooneofthebasicpropertiesofsyplectictegrators,whichnservethephysicallynservativequantitieswell(totalorbitalenergyandangurontu),ourlong-ternuricaltegrationsseetohavebeenperfordwithverysallerrorstheaveragedretiveerrorsoftotalenergy(∼10−9)andoftotangurontu(∼10−11)havereaednearlynstantthroughoutthetegrationperiod(fig1)thespecialstartupprocedure,warstart,wouldhavereducedtheaveragedretiveerrortotalenergybyaboutoneorderofagnitudeorore
retivenuricalerrorofthetotangurontuδa/a0andthetotalenergyδe/e0ournuricaltegrationsn±1,2,3,whereδeandδaaretheabsotechangeofthetotalenergyandtotangurontu,respectively,ande0anda0aretheiritialvaesthehorizontanitisgyr
notethatdiffereneratgsystes,differentatheaticallibraries,anddifferenthardwarearchitecturesresultdifferentnuricalerrors,throughthevariationsround-offerrorhandlgandnuricalgorithstheupperpaneloffig1,wecanregnizethissituationthesecurnuricalerrorthetotangurontu,whichshouldberigorolypreserveduptoache-eprecision
24arylongitudes
scethesyplectiapspreservetotalenergyandtotangurontuofn-bodydynaicalsystesherentlywell,thedegreeoftheirpreservationaynotbeaguracyofnuricaltegrations,especiallyasaasureoftheposis,iearylongitudestoestiatethenuriarylongitudes,weperfordthefollogproceduresweparedtheresultofouralong-tertegrationswithsotesttegrations,whichspanuchshorterperiodsbuuracythantheategrationsforthispurpose,weperuratetegrationwithastepsizeof0125d(1/64oftheategrations)spanng3x105yr,startgwiththesaitialnditionsasthen−1tegrationwensiderthatthistesttegrationprovideswitha‘pseudo-true’aryorbitalevotionnext,weparethetesttegrationwiththeategration,n−1fortheperiodof3x105yr,weseeadifferenceananoaliesoftheearthbeeentheotegrationsof∼052°(thecaseofthen−1tegration)thisdifferencecanbeextrapotedtothevae∼8700°,about25rotationsofearthafter5gyr,scetheerroroflongitudescreaseslearlywithtithesyplectiapsiirly,thelongitudeerrorofptocanbeestiatedas∼12°thisvaeforptoisuchbetterthantheresultkoshita&nakai(1996)wherethedifferenceisestiatedas∼60°
3nuricalresults–ignceattherawdata
thissectionwebrieflyreviewthelong-tearyorbitalotionthroughsosnapshotsofrawnuricaldatatheorsdicateslong-terstabilityallofournuricaltegrations:noorbitalcrossgsnorcloseenuntersbetstookpce
31generaldescriptionoftaryorbits
first,webrieflylookatthegeneralcharacterofthelong-tearyorbitsourterestherefocesparticurlyonthenerfosforwhichtheorbitalti-scalesareuchshorterthanthoseosaswecanseeclearlyfrothepnarorbitalnfigurationsshownfigs2and3,orbitalpositionsoftsdifferlittlebeeentheitiandfalpartofeachnuricaltegration,whichspansseveralgyrthesolidlesdenotgthepresesliealosiththeswarofdotseventhefalpartoftegrations(b)and(d)thisdicatesthatthroughouttheentiretegrationperiodthealostreguaryorbitalotionreanearlythesaastheyareatpresen
verticalviewoaryorbits(frothez-axisdirection)attheitiandfalpartsofthetegrationsn±1theaxesunitsareauthexy-pneissettothevariantpneofsorsystetotangurontu(a)theitialpartofn+1(t=0to00547x109yr)(b)thefalpartofn+1(t=49339x108to49886x109yr)(c)theitialpartofn−1(t=0to−00547x109yr)(d)thefalpartofn−1(t=−39180x109to−39727x109yr)eachpanel,atotalof23684potsareplottedwithantervalofabout2190yrover547x107yrsolidleseachpaneldenotethepresentorbitsofthefos(takenfrode245)
entricitiesandorbitalctionsfostheitiandfalpartofthetegrationn+1isshownfig4asexpected,thecharacteroftaryorbitalelentsdoesnotdiffersignificantlybeeentheitiandfalpartofeachtegration,atleastforven,earthandarstheelentsofrcury,entricity,seetochangetoasignificantextentthisispartlybecaetheorbitalti-istheshos,whichleadstoaorerapidorbitalevos;aybenearesttostabilitythisresultappearstobesoagreenithskar's(1994,1996)expectationsthatrgeandirregurvariatentricitiesandctionsofrcuryonati-scaleofseveral109yrhowever,theeffectofthepossiblestabilityoftheorbitofrcuryaynotfatallyaffecttheglobalstabirysysteogtothesalssofrcurywewillntionbrieflythelong-terorbitalevotionofrcurytersection4glow-passfilteredorbitalelents
theorbitalotionosseesrigorolystableandquitereguroverthisti-span(seealsosection5)
32ti–frequencyaps
aryotionexhibitsverylong-terstabilitydefedasthenon-existenceofcloseenunterevents,arydynaicscanchangetheosciltoryperiodaaryorbitalotiongraduallyoversuchlongti-spansevensuchslightfctuationsoforbitalvariationthefrequencydoa,particurlythecaseofearth,canpotentiallyhaveasignificanteffectonitssurfacecliatesystethroughsorsotionvariation(cfberger198
togiveanoverviewofthelong-terchangearyorbitalotion,weperfordanyfastfouriertransforations(ffts)alongthetiaxis,andsuperposedtheresultgperiodgrastodrawo-dsionalti–frequencyapsthespecificapproachtodragtheseti–frequencyapsthispaperisverysiple–uchsiplerthanthewaveletanalysisorskar's(1990,1993)frequencyanalysis
dividethelow-passfilteredorbitaldatatoanyfragntsofthesalengththelengthofeachdatasegntshouldbeaultipleof2ordertoapplytheff
eachfragntofthedatahasargeoverppgpart:forexaple,whentheithdatabegsfrot=tiandendsatt=ti+t,thenextdatasegntrangesfroti+δt≤ti+δt+t,whereδt?entuethisdivisionuntilwereachacertanubernbywhichtn+treachesthetotaltegrationlength
weapplyanffttoeachofthedatafragnts,andobtanfrequencydiagras
eachfrequencydiagraobtaedabove,thestrengthofperiodicitycanberepcedbyagrey-scale(orlour)char
weperfortherepcent,andnnectallthegrey-scale(orlour)chartstoonegraphforeachtegrationthehorizontaxisofthesenewgraphsshouldbetheti,iethestartgtisofeachfragntofdata(ti,wherei=1,…,n)theverticaxisrepresentstheperiod(orfrequency)oftheosciltionoforbitalelents
wehaveadoptedanfftbecaeofitsoverwhelgspeed,scetheaountofnuposedonentsisterriblyhuge(severaltensofgbytes)
atypicalexapleoftheti–frequencyapcreatedbytheaboveproceduresisshownagrey-scalediagraasfig5,whichshowsthevariationofpentricityandctionofearthn+2tegrationfig5,thedarkareashowsthatatthetidicatedbythevaeontheabscissa,theperiodicitydicatedbytheordateisstrongerthanthelighterareaaroundiecanregnizefrothisapthatthepentricityandctionofearthonlychangesslightlyovertheentireperiodveredbythen+2tegrationthisnearlyregurtrendisqualitativelythesaothertegratios,althoughtypicalfreqandelentbyelen
42long-terxchangeoforbitalenergyandangurontu
wecalcuteverylong-periodicvariationaryorbitalenergyandangurontugfiltereddeunayelentsl,g,hgandhareeqaryorbitangurontuanditsponentperunitassliaryorbitalenergyeperunitassase=−μ2/2l2pletelylear,theorbitalenergyandtheangurontueachfrequencybtbenstantnon-rysystecancaeanexchangeofenergyandangurontuthefrequencydoatheaplitudeofthelowest-frequencyosciltionshouldcreaseifthesysteisunstableandbreaksdowngraduallyhowever,suchasyptoofstabilityisnotproentourlong-tertegrations
fig7,thetotalorbitalenergyandangurontareshownfortegrationn+2theupperthreepanelsshowthelong-periodicvariationoftotalenergy(denotedase-e0),totangurontu(g-g0),andtheponent(h-h0)oscalcutedfrothelow-passfiltereddeunayelentse0,g0,h0denotetheitialvaesofeachquantitytheabsotedifferencefrotheitialvaesisplottedthepanelsthelowerthreepanelseachfigureshowe-e0,g-g0andh-h0oftsthefctuationshownthelowerpanelsisvirtuallyentirelyaresultofthes
&pargthevariationsofenergyandanguront,itisapparentthattheaplitudesofthsareuchsallerthants:theaplitudesosareuchrgerthanthsthisdoesnotanthatthenarysubsysteisorestablethantheouterone:thisissiplyaresultoftheretivesallnessoftheassesofthefourterrestrialparedwiththoseoftsanotherthgwenoticeiaeunstableorerapidlythantheouteronebecaeofitsshorterorbitalti-scalesthiscanbeseenthepanelsdenotedasner4fig7wherethelonger-periodicandirregurosciltionsareoreapparentthanthepanelsdenotedastotal9actually,thefctuationsthener4panelsaretoargeextentasaresultoftheorbitalvariationofthercuryhowever,wecannotneglectthentributionfrooths,aswewillseesubsequentsections
44long-teruplgofseverapai
letseesodividuaaryorbitalenergyandangurontuxpressedbythelow-passfiltereddeunayelentsfigs10and11showlong-tervotionoftheorbitaandtheangurontun+1andn−2tegrationswensforapparentpairstersoforbitalenergyandangurontuxchangeparticur,venandearthakeatypicalpairthefigures,theyshownegativerretionsexchangeofenergyandpositiverretionsexchangeofangurontuthenegativerretionexchangeoforbitalenergysforacloseddynaicalsystetersoftheorbitalenergythepositiverretionexchangeofangurontaresiultaneolyundercertalong-terperturbationscandidatesforperturbersarejupiterandsaturnalsofig11,wecanseethatarsshowsapositiverretiontheangurontuvariationtotheven–earthsystercuryexhibitscertanegativerretionstheangurontuverstheven–earthsyste,whichseestobeareactioncaedbythenservationofangurontutarysubsyste
itisnotclearattheonhytheven–earthpairexhibitsanegativerretionenergyexchangeandapositiverretionangurontuxchangeweaypossiblyexpthisthroughobservgthegeneralfactthattherearenosaryseiajoraxesuptosend-orderperturbationtheories(cfbrouwer&clence1961;boaletti&o1998)thiaryorbitalenergy(whichisdirectlyretedtotheseiajoraxisa)ightbeuchlessaffectesthanistheangurontuxchange(whichretestoe)hence,entricitiesofvenandearthcanbedisturbedeasilybyjupiterandsaturn,whichresultsapositiverretiontheangurontuxchangeontheotherhand,theseiajoraxesofvenandeartharelesslikelytobedisturbsththeenergyexchangeaybeliitedonlywiththeven–earthpair,whichresultsanegativerretiontheexchangeoforbitalenergythepair
asfortarysubsyste,jupiter–saturnanduran–neptuneseetoakedynaicalpairshowever,thestrengthoftheiruplgisnotasparedwiththatoftheven–earthpair
5±5x1010-yrtegraryorbits
saryassesareuchrgerthantaryasses,wetarysysteasarysystetersofthestudyofitsdynaicalstabilityhence,weaddedaupleoftrialtegrationsthatspan±5x1010yr,cdgonls(spspto)theresultsexhibittherigorostabirysysteoverthislongti-spanorbitalnfigurations(fig12),entricitiesandctions(fig13)showthisverylong-terstabilityosboththetiandthefrequencydoasalthoughwedonotshowapshere,thetypicalfrequencyoftheorbitalosciltionofptoandsisalostnstantdurgtheseverylong-tertegrationperiods,whichisdeonstratedtheti–frequencyapsonourwebpage
theseotegrations,theretivenuricalerrorthetotalenergywas∼10−6andthatofthetotangurontuwas∼10−10
51resonancestheneptune–ptosyste
koshita&nakai(1996)tegratearyorbitsover±55x109yrtheyfoundthatfourajorresonancesbeeenneptuneandptoareataeddurgthewholetegrationperiod,andthattheresonancesaybetheacaesofthestabilityoftheorbitofptotheajorfourresonancesfoundprevioresearchareasfollowsthefollogdescription,λdenotestheanlongitude,Ωisthelongitudeoftheascendgnodeandϖisthelongitudeofperihelionsubscriptspandndenoteptoandneptune
anotionresonancebeeenneptuneandpto(3:2)thecriticarguntθ1=3λp−2λn−ϖplibratesaround180°withanaplitudeofabout80°andalibrationperiodofabout2x104yr
thearguntofperihelionofptowp=θ2=ϖp−Ωplibratesaround90°withaperiodofabout38x106yrthedoantperiodicentricityandctionofptoaresynchronizedwiththelibrationofitsarguntofperihelionthisisanticipatedthesecurperturbationtheorynstructedbykozai(1962)
thelongitudeofthenodeofptoreferredtothelongitudeofthenodeofneptune,θ3=Ωp−Ωn,circutesandtheperiodofthiscircutionisequaltotheperiodofθ2librationwhenθ3beeszero,iethelongitudesofascendgnodesofneptuneandptooverp,theclesaxiu,esiuandtheargues90°whenθ3bees180°,theclesiu,esaxiuandtheargues90°agawillias&benson(1971)anticipatedthistypeofresonance,ternfirdbyi,nobili&carpo(1989)
anarguntθ4=ϖp−ϖn+3(Ωp−Ωn)libratesaround180°withalongperiod,∼57x108yr
ournuricaltegrations,theresonances(i)–(iii)areweltaed,andvariationofthecriticarguntsθ1,θ2,θ3reasiirdurgthewholetegrationperiod(figs14–16)however,thefourthresonance(iv)appearstobedifferent:thecriticarguntθ4alternateslibrationandcircutionovera1010-yrti-scale(fig17)thisisanterestgfactthatkoshita&nakai's(1995,1996)shortertegrationswerenotabletodisclose
6discsion
whatkdofdynaicalchanisatasthislong-terarysyste?wecanidiatelythkofoajorfeaturesthatayberesponsibleforthelong-terstabilityfirst,thereseetobenosignificantlower-orderresonances(anotionandsecur)beeenanypaisjupiterandsaturnareclosetoa5:2anotionresonance(thefao‘greatequality’),butnotjttheresonancezonehigher-orderresonancesarydynaicalotion,buttheyarenotsostrongastodesaryotionwiththelifetioftherealsorsystethesendfeature,whichwethkisoreiportantforthelong-terarysyste,isthedifferencedynaicaldistancebeeenterrestarysubsystes(ito&tanikawa1999,2001)aryseparationsbytheutualhillradii(r_),separationsasaregreaterthan26rh,whereasthosarelessthan14rhthisdifferenceisdirectlyretedtothedifferencebeeendynaicalfeaturesofterrestsshavesallerasses,shorterorbitalperiodsandwiderdynaicalseparationtheyarestronglypertsthathavergerasses,longerorbitalperiodsandnarrowerdynaicalseparationsarenotperturbedbyanyotherassivebodies
thepresearysysteisstillbegdisturbedbytheshowever,thewideseparationandutualteractionaongtsrendersthedisturbanceeffective;thedegreeofdistursiso(ej)(orderoentricityofjupiter),scethedisturbancecsisaforcedosciltionhavganaplitudeofo(ej)entricity,forexapleo(ej)∼005,isfarfrosufficientrovokestabilitytshavgsuchawideseparationas26rhthweassuthatthepresenidedynaicalseparationas(>26rh)isprobablyoneoftheostsignificantnditionsforatagthesarysysteovera109-yrti-spanourdetailedanalysisoftheretionshipbeeendynaicaldisandthestabilityti-scalearyotionisnowon-gog
althoughournuricaltegrationsspanthelifetiofthesorsyste,thenuberoftegrationsisfarfrosufficienttofilltheitialphasespaceitisnecessaryerfororeandorenuricaltegrationstonfirandexaedetailthelong-terarydynaics
——以上文段引自ito,t&tanikawa,klong-tertegrationsaaryorbitsoursorsysteonnotrastronsoc336,483–500(2002)
这只是作者君参考的一篇文章,关于太阳系的稳定性。
还有其他论文,不过也都是英文的,相关课题的中文文献很少,那些论文下载一篇要九美元(《nature》真是暴利),作者君写这篇文章的时候已经回家,不在检测中心,所以没有数据库的使用权,下不起,就不贴上来了。