)群更为具体的等价定义是:
SU(2)≡{(αβ?β?α?)|α,β∈C,|α|2+|β|2=1}.......
看到这里。
想必一些聪明的同学又双叒叕明白了:
没错!
这个矩阵因素的表现形,只有在UκαUβκ=det((Uκα))δβα=det((Uκα))I的情况下,才能够拥有三个3个独立的实参量!
而这个情况......
恰好就是当初1850副本奖励的那道公式中,第二阶段的应式表现形!
是的。
就是那道可以分成三个阶段,前三分之一内容便推导出了盘古粒子....或者说暗物质粒子的副本奖励。
不久前。
在锦屏实验室项目结束、意识到那份奖励的价值后。
徐云曾经特意花了些时间重新翻出了奖励,对整道公式进行了研究。
准确来说,是对公式的第二阶段进行了研究。
毕竟比起第一阶段,第二阶段和第三阶段的‘割裂感’要更明显。
也就是说不出意外的话......
第二阶段同样也有一个独立的成果...或者说物质存在。
但遗憾的是。
比起第一阶段的相对直观,第二阶段的难度要高出了十倍不止,内容非常复杂。
即便徐云花费了大量心力,也只能判断出第二阶段描述的不是具体的某个概率轨道,而是一种非常复杂的情景。
UκαUβκ=det((Uκα))δβα=det((Uκα))I,便是其中最常见的数学应式。
情景这个词儿可以理解成类似电场啊、磁场啊之类的概念,不过精细度要更高点儿。
如果把电磁、磁场看成普通的瓦房。
那么粒子物理中的情景就相当于是精装别墅,各方面的要求很高,需要一齐达标才行。
总而言之。
这可比单独的一条概率轨道要难多了。
如果不先找到对应的理论,这个情景肯定没法复现出来。
诚然。
如果动用高斯或者黎曼的思维卡,这部分内容大概率可以破解,毕竟那可是真正的“神”。
但问题是......
这两张思维卡实在是太宝贵了,属于徐云最关键的底牌。
无论是情感还是价值上,都